\(\int \frac {(d^2-e^2 x^2)^{5/2}}{x^3 (d+e x)^2} \, dx\) [165]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 110 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^3 (d+e x)^2} \, dx=\frac {e (4 d+e x) \sqrt {d^2-e^2 x^2}}{2 x}-\frac {\left (d^2-e^2 x^2\right )^{3/2}}{2 x^2}+2 d e^2 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{2} d e^2 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \]

[Out]

-1/2*(-e^2*x^2+d^2)^(3/2)/x^2+2*d*e^2*arctan(e*x/(-e^2*x^2+d^2)^(1/2))-1/2*d*e^2*arctanh((-e^2*x^2+d^2)^(1/2)/
d)+1/2*e*(e*x+4*d)*(-e^2*x^2+d^2)^(1/2)/x

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {866, 1821, 827, 858, 223, 209, 272, 65, 214} \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^3 (d+e x)^2} \, dx=2 d e^2 \arctan \left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{2} d e^2 \text {arctanh}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right )+\frac {e (4 d+e x) \sqrt {d^2-e^2 x^2}}{2 x}-\frac {\left (d^2-e^2 x^2\right )^{3/2}}{2 x^2} \]

[In]

Int[(d^2 - e^2*x^2)^(5/2)/(x^3*(d + e*x)^2),x]

[Out]

(e*(4*d + e*x)*Sqrt[d^2 - e^2*x^2])/(2*x) - (d^2 - e^2*x^2)^(3/2)/(2*x^2) + 2*d*e^2*ArcTan[(e*x)/Sqrt[d^2 - e^
2*x^2]] - (d*e^2*ArcTanh[Sqrt[d^2 - e^2*x^2]/d])/2

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 827

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2*p + 2))), x] + Di
st[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1)*Simp[g*(2*a*e + 2*a*e*m) + (g*(2*c
*d + 4*c*d*p) - 2*c*e*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2,
0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
!ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[(f + g*x)^n*((a + c*x^2)^(m + p)/(d - e*x)^m), x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rubi steps \begin{align*} \text {integral}& = \int \frac {(d-e x)^2 \sqrt {d^2-e^2 x^2}}{x^3} \, dx \\ & = -\frac {\left (d^2-e^2 x^2\right )^{3/2}}{2 x^2}-\frac {\int \frac {\left (4 d^3 e-d^2 e^2 x\right ) \sqrt {d^2-e^2 x^2}}{x^2} \, dx}{2 d^2} \\ & = \frac {e (4 d+e x) \sqrt {d^2-e^2 x^2}}{2 x}-\frac {\left (d^2-e^2 x^2\right )^{3/2}}{2 x^2}+\frac {\int \frac {2 d^4 e^2+8 d^3 e^3 x}{x \sqrt {d^2-e^2 x^2}} \, dx}{4 d^2} \\ & = \frac {e (4 d+e x) \sqrt {d^2-e^2 x^2}}{2 x}-\frac {\left (d^2-e^2 x^2\right )^{3/2}}{2 x^2}+\frac {1}{2} \left (d^2 e^2\right ) \int \frac {1}{x \sqrt {d^2-e^2 x^2}} \, dx+\left (2 d e^3\right ) \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx \\ & = \frac {e (4 d+e x) \sqrt {d^2-e^2 x^2}}{2 x}-\frac {\left (d^2-e^2 x^2\right )^{3/2}}{2 x^2}+\frac {1}{4} \left (d^2 e^2\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {d^2-e^2 x}} \, dx,x,x^2\right )+\left (2 d e^3\right ) \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right ) \\ & = \frac {e (4 d+e x) \sqrt {d^2-e^2 x^2}}{2 x}-\frac {\left (d^2-e^2 x^2\right )^{3/2}}{2 x^2}+2 d e^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{2} d^2 \text {Subst}\left (\int \frac {1}{\frac {d^2}{e^2}-\frac {x^2}{e^2}} \, dx,x,\sqrt {d^2-e^2 x^2}\right ) \\ & = \frac {e (4 d+e x) \sqrt {d^2-e^2 x^2}}{2 x}-\frac {\left (d^2-e^2 x^2\right )^{3/2}}{2 x^2}+2 d e^2 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )-\frac {1}{2} d e^2 \tanh ^{-1}\left (\frac {\sqrt {d^2-e^2 x^2}}{d}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.32 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.13 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^3 (d+e x)^2} \, dx=-\frac {\left (d^2-4 d e x-2 e^2 x^2\right ) \sqrt {d^2-e^2 x^2}}{2 x^2}+d e^2 \text {arctanh}\left (\frac {\sqrt {-e^2} x-\sqrt {d^2-e^2 x^2}}{d}\right )+2 d e \sqrt {-e^2} \log \left (-\sqrt {-e^2} x+\sqrt {d^2-e^2 x^2}\right ) \]

[In]

Integrate[(d^2 - e^2*x^2)^(5/2)/(x^3*(d + e*x)^2),x]

[Out]

-1/2*((d^2 - 4*d*e*x - 2*e^2*x^2)*Sqrt[d^2 - e^2*x^2])/x^2 + d*e^2*ArcTanh[(Sqrt[-e^2]*x - Sqrt[d^2 - e^2*x^2]
)/d] + 2*d*e*Sqrt[-e^2]*Log[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e^2*x^2]]

Maple [A] (verified)

Time = 0.44 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.05

method result size
risch \(-\frac {\sqrt {-e^{2} x^{2}+d^{2}}\, \left (-2 e^{2} x^{2}-4 d e x +d^{2}\right )}{2 x^{2}}+\frac {2 d \,e^{3} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{\sqrt {e^{2}}}-\frac {d^{2} e^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{2 \sqrt {d^{2}}}\) \(116\)
default \(\frac {-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{2 d^{2} x^{2}}-\frac {5 e^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )}{2 d^{2}}}{d^{2}}+\frac {3 e^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{5}+d^{2} \left (\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{3}+d^{2} \left (\sqrt {-e^{2} x^{2}+d^{2}}-\frac {d^{2} \ln \left (\frac {2 d^{2}+2 \sqrt {d^{2}}\, \sqrt {-e^{2} x^{2}+d^{2}}}{x}\right )}{\sqrt {d^{2}}}\right )\right )\right )}{d^{4}}-\frac {2 e \left (-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{d^{2} x}-\frac {6 e^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{6}+\frac {5 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{4}+\frac {3 d^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )}{d^{2}}\right )}{d^{3}}-\frac {e \left (\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {7}{2}}}{3 d e \left (x +\frac {d}{e}\right )^{2}}+\frac {5 e \left (\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+d e \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 e^{2}}+\frac {3 d^{2} \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{4 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )\right )}{3 d}\right )}{d^{3}}-\frac {3 e^{2} \left (\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+d e \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 e^{2}}+\frac {3 d^{2} \left (-\frac {\left (-2 \left (x +\frac {d}{e}\right ) e^{2}+2 d e \right ) \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{4 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )\right )}{d^{4}}\) \(816\)

[In]

int((-e^2*x^2+d^2)^(5/2)/x^3/(e*x+d)^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*(-e^2*x^2+d^2)^(1/2)*(-2*e^2*x^2-4*d*e*x+d^2)/x^2+2*d*e^3/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)
^(1/2))-1/2*d^2*e^2/(d^2)^(1/2)*ln((2*d^2+2*(d^2)^(1/2)*(-e^2*x^2+d^2)^(1/2))/x)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.08 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^3 (d+e x)^2} \, dx=-\frac {8 \, d e^{2} x^{2} \arctan \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{e x}\right ) - d e^{2} x^{2} \log \left (-\frac {d - \sqrt {-e^{2} x^{2} + d^{2}}}{x}\right ) - 2 \, d e^{2} x^{2} - {\left (2 \, e^{2} x^{2} + 4 \, d e x - d^{2}\right )} \sqrt {-e^{2} x^{2} + d^{2}}}{2 \, x^{2}} \]

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x^3/(e*x+d)^2,x, algorithm="fricas")

[Out]

-1/2*(8*d*e^2*x^2*arctan(-(d - sqrt(-e^2*x^2 + d^2))/(e*x)) - d*e^2*x^2*log(-(d - sqrt(-e^2*x^2 + d^2))/x) - 2
*d*e^2*x^2 - (2*e^2*x^2 + 4*d*e*x - d^2)*sqrt(-e^2*x^2 + d^2))/x^2

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 4.33 (sec) , antiderivative size = 347, normalized size of antiderivative = 3.15 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^3 (d+e x)^2} \, dx=d^{2} \left (\begin {cases} - \frac {e \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}}{2 x} + \frac {e^{2} \operatorname {acosh}{\left (\frac {d}{e x} \right )}}{2 d} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\\frac {i d^{2}}{2 e x^{3} \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e}{2 x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} - \frac {i e^{2} \operatorname {asin}{\left (\frac {d}{e x} \right )}}{2 d} & \text {otherwise} \end {cases}\right ) - 2 d e \left (\begin {cases} \frac {i d}{x \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + i e \operatorname {acosh}{\left (\frac {e x}{d} \right )} - \frac {i e^{2} x}{d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\- \frac {d}{x \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - e \operatorname {asin}{\left (\frac {e x}{d} \right )} + \frac {e^{2} x}{d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) + e^{2} \left (\begin {cases} \frac {d^{2}}{e x \sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} - d \operatorname {acosh}{\left (\frac {d}{e x} \right )} - \frac {e x}{\sqrt {\frac {d^{2}}{e^{2} x^{2}} - 1}} & \text {for}\: \left |{\frac {d^{2}}{e^{2} x^{2}}}\right | > 1 \\- \frac {i d^{2}}{e x \sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} + i d \operatorname {asin}{\left (\frac {d}{e x} \right )} + \frac {i e x}{\sqrt {- \frac {d^{2}}{e^{2} x^{2}} + 1}} & \text {otherwise} \end {cases}\right ) \]

[In]

integrate((-e**2*x**2+d**2)**(5/2)/x**3/(e*x+d)**2,x)

[Out]

d**2*Piecewise((-e*sqrt(d**2/(e**2*x**2) - 1)/(2*x) + e**2*acosh(d/(e*x))/(2*d), Abs(d**2/(e**2*x**2)) > 1), (
I*d**2/(2*e*x**3*sqrt(-d**2/(e**2*x**2) + 1)) - I*e/(2*x*sqrt(-d**2/(e**2*x**2) + 1)) - I*e**2*asin(d/(e*x))/(
2*d), True)) - 2*d*e*Piecewise((I*d/(x*sqrt(-1 + e**2*x**2/d**2)) + I*e*acosh(e*x/d) - I*e**2*x/(d*sqrt(-1 + e
**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (-d/(x*sqrt(1 - e**2*x**2/d**2)) - e*asin(e*x/d) + e**2*x/(d*sqrt(1
 - e**2*x**2/d**2)), True)) + e**2*Piecewise((d**2/(e*x*sqrt(d**2/(e**2*x**2) - 1)) - d*acosh(d/(e*x)) - e*x/s
qrt(d**2/(e**2*x**2) - 1), Abs(d**2/(e**2*x**2)) > 1), (-I*d**2/(e*x*sqrt(-d**2/(e**2*x**2) + 1)) + I*d*asin(d
/(e*x)) + I*e*x/sqrt(-d**2/(e**2*x**2) + 1), True))

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.12 \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^3 (d+e x)^2} \, dx=\frac {2 \, d e^{3} \arcsin \left (\frac {e^{2} x}{d \sqrt {e^{2}}}\right )}{\sqrt {e^{2}}} - \frac {1}{2} \, d e^{2} \log \left (\frac {2 \, d^{2}}{{\left | x \right |}} + \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} d}{{\left | x \right |}}\right ) + \frac {1}{2} \, \sqrt {-e^{2} x^{2} + d^{2}} e^{2} + \frac {2 \, \sqrt {-e^{2} x^{2} + d^{2}} d e}{x} - \frac {{\left (-e^{2} x^{2} + d^{2}\right )}^{\frac {3}{2}}}{2 \, x^{2}} \]

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x^3/(e*x+d)^2,x, algorithm="maxima")

[Out]

2*d*e^3*arcsin(e^2*x/(d*sqrt(e^2)))/sqrt(e^2) - 1/2*d*e^2*log(2*d^2/abs(x) + 2*sqrt(-e^2*x^2 + d^2)*d/abs(x))
+ 1/2*sqrt(-e^2*x^2 + d^2)*e^2 + 2*sqrt(-e^2*x^2 + d^2)*d*e/x - 1/2*(-e^2*x^2 + d^2)^(3/2)/x^2

Giac [F(-2)]

Exception generated. \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^3 (d+e x)^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((-e^2*x^2+d^2)^(5/2)/x^3/(e*x+d)^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Limit: Max order reached or unable to make series expansion Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d^2-e^2 x^2\right )^{5/2}}{x^3 (d+e x)^2} \, dx=\int \frac {{\left (d^2-e^2\,x^2\right )}^{5/2}}{x^3\,{\left (d+e\,x\right )}^2} \,d x \]

[In]

int((d^2 - e^2*x^2)^(5/2)/(x^3*(d + e*x)^2),x)

[Out]

int((d^2 - e^2*x^2)^(5/2)/(x^3*(d + e*x)^2), x)